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Palladium-Chiral Phosphine Ratio.
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Abstract: Reaction of (+)-8a-methoxycarbonyloxy-4a8-methyl-2,3,4,4a,5,6,7 8-octahydronaphthalene
(1) in the presence of a palladium-chiral phosphine catalyst gave 4a-methyi-3.4,4a,5,6,7-
hexahydronaphthalene (2) enantioselectively. When the reaction was carried out using Pd(OAc); and
(5)-(-)-BINAP, the enantioselection was influenced by the phosphine to palladium ratio, because (S)-
BINAP oxide generated in siru acted as a ligand causing the opposite enantioselectivity. High
enantioselectivity (86% ee) was obtained when (1-Me-C3Hs-PdCl), and (5)-(-)-p-Tol-BINAP were used.
Copyright © 1996 Elsevier Science Ltd

Various types of palladium-catalyzed methods for enantioselective conversion of achiral or racemic allylic
compounds into optically active compounds using chiral phosphine ligands have been reported.!
Enantioselective nucleophilic substitutions via symmetrical 1,3-disubstituted z-allylpalladium complexes have
been realized with high enantioselectivities by using various chiral phosphines. However, less explored
among these reactions are enantioselective dehydrogenative elimination to produce 1,3-dienes.2 We have
realized the enantioselective elimination of the allylic bicyclic carbonate 1 to a diene 2 using a Pd-chiral
phosphine catalyst (Scheme 1). In the course of our investigation, we have found that the ratio of BINAP to
Pd(OACc);, 3 influences the enantioselection dramatically. We now report the accomplishment of the
enantioselective dehydrogenative elimination of a bicyclic allylic carbonate 1 to give 2, and importance of the
palladium-chiral phosphine ratio.
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The elimination reaction of 14 was carried out using 5 mol% of Pd(OAc); and various amounts of

(S)-BINAP as the ligand in dioxane at 100 °C for 14 h. When less than 1.5 equivalents of (S)-BINAP to
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Pd(OAc), was used, (+)-26 was obtained as the major enantiomer (Runs 1, 2, and 3 in Table 1).7 However,
when 1.8 equivalents of (§)-BINAP to Pd(OAc), was used, the enantioselection was reversed, thus, (-)-2 was
obtained in 47% ee (Run 4). When the reactions were carried out with a zero valent palladium complex,
Pd;(dba);CHC]l3, instead of Pd(OAc),, the ratio of added (§)-BINAP to Pd(0) did not influence the
enantioselection to give (-)-2, even when excess (S)-BINAP was used (Runs 6 and 7). The results imply that
(5)-(-)-BINAP used in combination with a Pd(0) complex gives (4a$)-(-)-2, whereas (5)-BINAP(O) produced
during the process of reduction of Pd(OAc); to a Pd(0) species!0 affords (4aR)-(+)-2.

(i) Pd (5 mol%)
e 00
Y ] +
0CO,Me dioxane, 100°C
(4aR*, 851 14h (4af)y-(+)-2 (4a5)+(-)-2
racemic mixture

Table 1. Palladium-(S)-(-)-BINAP catalyzed reaction of 1

Run Pd Ligand Ligand/Pd Yield (%) % ee Rotation

1 Pd(OAc), (S)-(-)-BINAP 1.0 59 *H )
2 Pd(OAC); (S)-(-)-BINAP 12 &8 % )
3 Pd(OQAc), (S)-(-)-BINAP 15 60 6 )
4 Pd(OAc), (S)-(-)-BINAP 1.8 60 49 )
5 Pd(OAc), (S)-(-)-BINAP 20 48 Z7 -
6  Pdy(dba)3CHCl;  (S)-(-)-BINAP 10 2 > )
7  Pdp(dba)sCHCl3  (S)-(-)-BINAP 20 » 40 )
8  Pdy(dba)sCHCI3;  (S)-BINAP(O) 20 40 K4 +)
9  Pdy(dba)sCHCl3;  (S)-BINAP(O). 20 0

OO PPh, OO P(O)Ph, OO ’F;:g;::z
PPh PPh 2
- g I

(S)-(-)-BINAP (S)-(-)-BINAP(O) (9)-()-BINAP(O),

In fact when the zero valent palladium compound, Pd,(dba)3CHCl; and (S)-BINAP(O)!1 were used,
(+)-2 was obtained with 37% ee (Run 8). No reaction proceeded when (§)-BINAP(O); was used as the
ligand instead of (5)-BINAP(O) (Run 9). These results indicate that Pd(0)-(S)-BINAP and Pd(0)-(S)-
BINAP(O) have opposite enantiomeric selectivities.

Among several palladium species examined for the palladium(0)-phosphine precursors, (1-Me-
C3HsPdCl), gave the most satisfactory results in the presence of Et3N. The results using a combination of (1-
Me-C3HsPdCl); and several chiral bidentate ligands are shown in Table 2. Here again, reversal of the optical

activity of the diene 2 from (+)- to the (-)- enantiomer was observed when (-)-BINAP was used in 1 : 1 and
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2 : 1 ratios to the palladium precursor (Runs 1 and 2). Although the reversal of the optical activity was not
observed when the other chiral phosphines were used, considerable influence of the phosphine to Pd(1l) ratio
on the yields and ec was observed (Runs 3 to 8). The high enantioselectivity of 86 % ee was achieved when
two equiv. of (-)-p-Tol BINAP!2 was used per 1 equiv. of Pd(I). The present results indicate that the ratio of
the phosphine ligand to the Pd(II) catalyst precursor gives a critical influence in controling the asymmetric
reactions. The phosphine oxide ligand produced from the initially used chiral phosphine in the process of in
situ reduction of PA(II) precursors to Pd(0) species can act as a non-innocent chiral ligand causing the opposite
enantioselectivity from that of the unoxidized chiral phosphine systems. More attention should be paid to the
chemical transformation of chiral ligands during the Pd(IT) to Pd(0) reduction of Pd(II) precursors.

(1-Me-C3HsPdCl), (5 mol%)
Ligand, EtsN (5 mol%) (jg @
6002Me dioxane, 100°C

(4aR" 8591 14h (4aR)-(+)2 (4aS-()-2
racemic mixture

Table 2. Reaction of 1 by palladium-chiral ligand catalyst.

Run Ligand Ligand/Pd Time Yield(%) %ee Rotation

1 (-)-BINAP 1 8 41 v.:] +
2 (-)-BINAP 2 2 61 7 )
3 {-)-DIOP 1 7 8 0

4 (-)-DIoP 2 3 57 > )
5  (-)-Chiraphos 1 14 10 31 ¢
6  (-)-Chiraphos 2 5 54 P )
7  ()-pTo-BINAP 1 14 3 5 8)
8 (-)-pTol-BINAP 2 2 &6 % ()
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